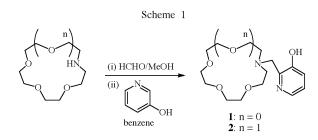
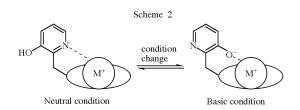
Armed-azacrown Ethers Having Dual Binding Sites in a Side Arm: Complexing Abilities and Crystal Structure of Two Alkali-metal Complexes


Yoichi Habata*[a], Tomomi Saeki [a], Sadatoshi Akabori [a], Xian X. Zhang [b] and Jerald S. Bradshaw [b]

 [a] Department of Chemistry, Faculty of Science, Toho University, Funabashi, Chiba 274-8510, Japan
 [b] Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA Received July 18, 2000


New armed-monoaza-12-crown-4 and armed-monoaza-15-crown-5 ethers having dual phenolic OH and pyridine nitrogen binding sites in a side arm were prepared by the Mannich reaction of *N*-methoxymethyl-monoazacrown ethers with 3-hydroxypyridine. Complexation studies of these new hydroxypyridine-armed ligands were carried out by liquid membrane transport, ¹H nmr titration experiments, thermodynamic values (log *K*, ΔH and T ΔS), and X-ray crystallography of two alkali-metal complexes. These results indicate that the oxygen atom of the phenolic OH group and pyridine nitrogen atom of the side arm are involved in complexation under basic and neutral conditions, respectively.

J. Heterocyclic Chem., 38, 253 (2001).

Recently, we reported the synthesis of p-hydroxybenzyl-armed macrocycles, molecular structures of the polymer-like complexes formed from them and various salts [1-6]. In continuation, we designed macrocyclic ligands having hydroxypyridine as an additional binding site in the side arm (1 and 2, Scheme 1). We expected to

observe two phenomenon with these new ligands: (i) when one of the binding sites coordinates to a cation bound in the crown ether ring, the other coordination site may bind a cation incorporated in another ligand molecule to give a polymer-like complex, and (ii) since the armed-azacrown ethers have dual binding sites in the side arm, pyridine N atom and phenolic OH group, it may be possible to control the functional group involved in complexing by changing conditions (Scheme 2). We report here the synthesis and complexing abilities of two armed-azacrown ethers having dual binding sites.

N-(6'-Hydroxy-2'-pyridyl)monoazacrown ethers, **1** and **2**, were prepared by the Mannich reaction of a mixture of the *N*-methoxymethylcrown ether and 3-hydroxypyridine in benzene. Compounds **1** and **2** were obtained as hygroscopic oils in 74% and 89% yields, respectively. Structures of these compounds are confirmed by their ¹H nmr, mass spectral and elemental analyses.

Competitive alkali-metal ion transport by 1 and 2 were carried out using a double tube transport apparatus. Results of the transport experiments are summarized in Table 1. When 1 and 2 were used as carriers in bulk liquid membrane transport under basic-source phase/acidicreceiving phase conditions (using alkali-metal hydroxides), lithium and sodium cations were selectively transported, respectively. Under neutral-source phase/neutral-receiving phase conditions (using alkali-metal thiocyanates), ligand 2 also exhibited sodium cation selectivity, although the transport rate decreased. Under neutral conditions, ligand 1 did not transport any of the cations studied. The transport experiments show that the deprotonated phenolic OH group participates in complexation under basic conditions, whereas neither the phenolic OH group nor the nitrogen atom in the side arm act as capping sites under neutral conditions. Thus, ligands 1 and 2 transport size-matched alkali-metal cations under basic conditions and ligand 2 does under neutral conditions.

 Table 1

 Competitive Transport of Alkali Metal Cations with 1 and 2

	Transport rate (µmol/hour) [a]						
	МОН			MSCN			
Carrier	Li+	K^+	Cs^+	Li+	K^+	Cs+	
1	280	< 1	< 1	< 1	< 1	< 1	
Carrier	Na ⁺	K^+	Cs^+	Na ⁺	K^+	Cs^+	
2	610	17	3	14	< 1	< 1	

[a] Reproducibility is ± 10 % or better.

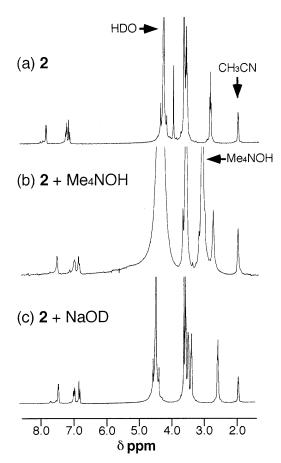


Figure 1. ¹H NMR spectra of (a) **2**, (b) **2**+Me₄NOH, and (c) **2**+NaOD.

Titration experiments using nmr are convenient for obtaining structural information about metal ion-ligand complexes. We carried out ¹H nmr titration experiments in an acetonitrile- $d_{3/}$ deuterium hydroxide (1:1) solution for ligand 2. When 1.0 equivalent of tetramethylammonium hydroxide, which forms a salt with the phenolic OH group and would not bind inside the crown ether, was added to a solution of 2, the aromatic protons next to the pyridine nitrogen atom and the OH group in the hydroxypyridine unit shifted to higher field by 0.31 and 0.35 ppm, respectively (Figure 1b). The methylene protons at the benzylic position also shifted to higher field by 0.29 ppm. Clearly, formation of a phenoxide salt causes significant chemical shifts of the signals of the aromatic hydrogens as expected. The NCH₂ and OCH₂ methylene protons of the crown ether ring shifted to higher field by only 0.09 and 0.02 ppm, respectively, showing little or no ring association with the cation. On the other hand, when 1 equivalent of sodium hydroxide- d_1 (40% solution in deuterium hydroxide) was added to a solution of 2, significant chemical shift changes were observed not only for the aromatic protons, but also for the methylene protons of the crown ring (Figure 1c). The aromatic protons and the methylene protons at the

benzylic position shifted almost the same amount as in the 2-tetramethylammonium hydroxide system suggesting that a sodium ion forms a salt with the phenoxide ion. In addition, the NCH₂CH₂O, NCH₂CH₂O, NCH₂CH₂OCH₂ methylene protons of the crown ring were shifted to higher field by 0.22, 0.14 and 0.09 ppm, respectively. The chemical shift changes of the crown ring protons when sodium hydroxide- d_1 was added clearly show that the sodium ion is interacting with the macrocycle. The chemical shift changes to the aromatic ring show that sodium ion is interacting with the phenoxide oxygen. Thus, the phenoxide O atom of the side arm binds the sodium ion incorporated in the crown ether part under basic conditions. No spectral changes were observed with the addition of 1.0 equivalent of sodium thiocyanate under neutral conditions. Structural information for the hydroxypyridine unit in the complexes of 2 with sodium thiocyanate was not obtained by the ¹H nmr titration experiments.

To investigate the complexation ability of 2, thermodynamic values (log K, ΔH and T ΔS) were measured by titration calorimetry in methanol solution (Table 2) [7]. The log *K* values show that ligand **2** forms the most stable 1:1 complex with sodium ion (log K = 2.88) followed by potassium ion (log K = 2.73), rubidium ion (log K = 2.63) and cesium ion (log K = 2.45). It is well known that the slope (α) of the enthalpy-entropy compensation (plot of T ΔS versus ΔH) indicates conformational changes of host compounds on complex formation [8]. From the plot of T ΔS versus ΔH , the α value was calculated as 0.876 $(r^2 = 0.995)$. This α value agrees with the average (0.87) of typical armed-crown ethers. This result suggests that ligand 2 forms complexes with alkali-metal cations by both the crown moiety and the side arm under neutral conditions.

 Table 2

 Log K, ΔH (kJ/mol), and T ΔS (kJ/mol) Values for the 1:1 Interaction of

 Compound **2** (L) with Metal Cations (M⁺) in Methanol Solution at 25 °C.

Cation	$\log K$	ΔH	$T\Delta S$
Na ⁺	2.88 ± 0.02	-23.3 <u>+</u> 0.2	-6.9
\mathbf{K}^+	2.73 <u>+</u> 0.04	-19.5 <u>+</u> 0.3	-3.9
Rb^+	2.63 ± 0.05	-20.6 <u>+</u> 0.4	-5.6
Cs^+	2.45 ± 0.08	-6.9 ± 0.5	7.1

It is easily estimated that the lone pair of the pyridine nitrogen atom has higher affinity to the positive charge (cation) than the oxygen of alcoholic and phenolic OH groups, while phenolate anion affinity is much stronger due to the large Coulomb term. To visualize and confirm the estimation, the electrostatic potential iso-surfaces (isopotential surfaces) [9] of 2-methyl-3-hydroxypyridine, a model compound of the side arm portion of the ligand, and its phenolate anion were calculated by the density functional calculation (Slater, Vosko, Wilk, Nusair (SVWN) which involves the local density approximation/numerical polarization basis sets (DN*)) method [10]. The electrostatic potential is defined as the energy of interaction of a positive point charge located with the nuclei and electrons of a molecule, and the isopotential surfaces show the lone pairs on the nitrogen and oxygen atoms [9]. As shown in Figure 2, in 2-methyl-3-hydroxypyridine, the isopotential surface of the nitrogen atom is larger than that of the oxygen atom, while the isopotential surface of the oxygen atom is larger in the phenolate anion. The calculation results support that the armedazacrown ethers having 3-hydroxypyridine could change their additional binding sites in response to the conditions (neutral and basic). Thus, the nitrogen atom of the hydroxypyridine unit has a greater binding ability than the oxygen atom of the phenolic OH group toward metal cations under the neutral condition. Conversely, the phenolate oxygen atom has a greater binding ability in basic conditions. There is a great difference in the energy of the isopotential surface between 2-methyl-3-hydroxypyridine (-30.0 kcal/mol) and its phenolate anion (-139.3 kcal/mol). Since a larger negative value of the isopotential surface means greater attracting effect, the values of the isopotential surface would also reflect the strength of interaction between cations and heteroatoms in the hydroxypyridine unit.

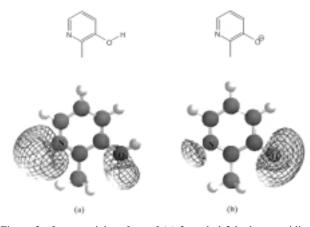


Figure 2. Isopotential surface of (a) 2-methyl-3-hydroxypyridine (Isopotential value = -30.0 kcal/mole) and its anion (Isopotential value = -139.3 kcal/mole) calculated by density functional calculation (SVWN/DN*) method.

Although we tried to make alkali-metal complexes of ligands 1 and 2 with alkali-metal hydroxide and alkalimetal thiocyanate salts, only the sodium thiocyanate complex with ligand 1 and the rubidium thiocyanate complex with ligand 2 were obtained as single crystals suitable for X-ray crystallography. Figure 3 shows the ORTEP views of the 1-NaSCN and 2-RbSCN complexes. The views indicate that sodium and rubidium cations are six-coordinated with the pyridine nitrogen atoms coordinated to the guest cations. The phenolic OH group is not involved in the complexation in these complexes. The results clearly show that the pyridine nitrogen atom of the side arm is used for complexation under the neutral condition.

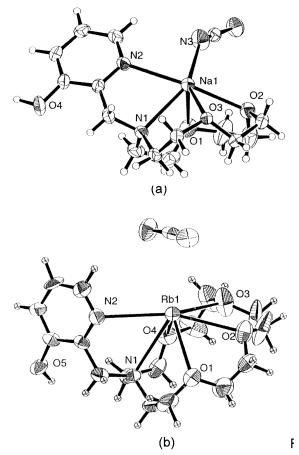


Figure 3. The ORTEP diagrams of (a) 1-NaSCN and (b) 2-RbSCN complexes.

In conclusion, armed-azacrown ethers having dual phenolic OH and pyridine nitrogen binding sites in a side arm were prepared. Complexation studies of these new hydroxypyridine-armed ligands show that the oxygen atom of the phenolic OH group and pyridine nitrogen atom of the side arm are used for complexation under basic and neutral conditions, respectively.

EXPERIMENTAL

The ¹H nmr spectra were measured in deuteriochloroform on a Brucker AC-250 (250 MHz) spectrometer. The ei-ms were performed using the Hitachi M-80 spectrometer.

General Procedure for the Reaction of 3-Hydroxypyridine with *N*-Methoxymethyl Crown Ethers.

A mixture of *N*-methoxymethylmonoazacrown ether [11] (1.0 mmole) and 3-hydroxypyridine (1.0 mmole) in absolute benzene (20 mL) was refluxed under a nitrogen atmosphere for 24 hours. The reaction mixture was cooled and then concentrated under

	1-NaSCN	2-RbSCN
Formula	C ₁₅ H ₂₂ N ₃ O ₄ SNa	C ₁₇ H ₂₆ N ₃ O ₅ SRb
Μ	363.41	469.94
Crystal system	monoclinic	monoclinic
Space group	$P2_1/n$	$P2_1/n$
$a/\text{\AA}$	11.263(4)	13.418(8)
b/Å	8.876(3)	9.053(8)
$c/\text{\AA}$	18.625(3)	18.191(6)
β/°	103.65	102.43(4)
U/Å ³	1809.4(8)	2157(2)
Ζ	4	4
Dc/g cm ⁻³	1.334	1.446
F(000)	768.00	968.00
μ (Mo-K α)/cm ⁻¹	2.26	24.17
Crystal dimensions/mm	0.50x0.50x0.50	0.10x0.10x0.50
No. of reflections for unit cell	25 (27.8-29.9)	25 (20.2-23.1)
deterimnation $(2\theta \text{ range})/^{\circ}$		
Scan width/°	1.57+0.30tanθ	1.15+0.30tanθ
Limiting indices	$0\leq h\leq 14,0\leq k\leq 11,-24\leq l\leq 23$	$0 \leq h \leq 14, 0 \leq k \leq 10, \text{-}21 \leq l \leq 21$
No. reflections		
measured	4660	3803
unique (R _{int} =)	4441 (0.018)	3621 (0.095)
used[all data], N _o	1981	3377
R	0.081	0.184
Rw	0.142	0.0157
R1 [I> $2.0\sigma(I)$]	0.051	0.065
Goodness of fit	1.46	1.03
No. parameters, N_p	217	244
Maximum shift/error in final cycle	0.001	0.010
Maximum, minimum peaks in final difference map/e $Å^{-3}$	0.21, -0.25	0.95, -0.98

Table 3 Crystal and Selected Experimental Data for 1-NaSCN and 2-RbSCN

Details in common: ω -2 θ scan; scan range 2 θ 0-55°; Rw=[$\Sigma w(|Fo|-|Fc|)^2/\Sigma wFo^2$]^{1/2}, $R1 = \Sigma ||Fo|-|Fc||/\Sigma |Fo|$, goodness of fit [$\Sigma w(|Fo|-|Fc|)^2/(N_o-N_p)$]^{1/2}.

reduced pressure. The residual yellow oil was separated and purified by gel-permeation column chromatography to give the following products.

N-(6'-Hydroxy-2'-pyridylmethyl)-1,4,7-trioxa-10-azacyclodo-decane (1).

Ligand **1** (74%) was isolated as an oil; ¹H-nmr: δ 7.99 (dd, J = 2.5 Hz, J = 3.7 Hz, 1H), 7.10-7.09 (m, 2H), 4.01 (s, 2H), 3.73-3.61 (m, 17H), 2.85 (t, J = 5.5 Hz, 4H); ms: ei (m/z) 283 (M⁺ + 1, 100 %).

Anal. Calcd. for C₁₄H₂₂N₂O₄•1/10H₂O: C, 59.18; H, 7.87; N, 9.86. Found: C, 59.02; H, 7.87; N, 9.89.

N-(6'-Hydroxy-2'-pyridylmethyl)-1,4,7,10-tetraoxa-13-azacyclopentadecane (2).

Ligand **2** (89%) was isolated as an oil; ¹H nmr: δ 7.97 (dd, J = 1.7 Hz, J = 3.7 Hz, 1H), 7.18-7.07 (m, 2H), 3.99 (s, 2H), 3.73-3.63 (m, 13H), 2.81 (t, J = 4.7 Hz, 4H); ms: ei (m/z) 327 (M⁺ + 1, 100 %).

Anal. Calcd. for C₁₆H₂₆N₂O₅1/10H₂O: C, 58.56; H, 8.05; N, 8.54. Found: C, 58.40; H, 8.18; N, 8.49.

Metal Ion Transport Experiments.

The transport experiments were carried out using a double tube (diameter of the inner and outer tubes are 10 mm and 20

mm, respectively) at 25±2 °C. Initial conditions of the competitive transport were as follows; [basic source phase] = aqueous solution containing a mixture of 0.1 mole/L of sodium hydroxide, potassium hydroxide and cesium hydroxide (4 mL) or aqueous solution containing a mixture of 0.1 mole/L of lithium hydroxide, potassium hydroxide and cesium hydroxide (4 mL): [membrane phase] = 2 mmoles/L of crown ether in chloroform (4)mL): [acidic receiving phase] = 0.1 mole/L of hydrochloric acid (1 mL). Neutral source and receiving phase conditions were as follows; [neutral source phase] = aqueous solution containing a mixture of 0.1 mole/L of sodium thiocyanate, potassium thiocyanate and cesium thiocyanate (4 mL) or aqueous solution containing a mixture of 0.1 mole/L of lithium thiocyanate, potassium thiocyanate and cesium thiocyanate (4 mL): [membrane phase] = 2 mmoles/L of crown ether in chloroform (4 mL): [neutral-receiving phase] = distilled water (1 mL). The concentration of the receiving phase was determined by ion chromatography. We used two sets of cations, because peaks for lithium and sodium cations overlapped in our analysis condition. The transport rate was calculated from the amounts of alkali-metal cations in the receiving phase. The aqueous and organic phases were stirred by a stirring bar (10 mm) at 500 rpm by a synchronous motor in order to avoid a stirring error. The amounts of metal ions in the receiving phases were measured by ion chromatography. The initial transport rate

Table 4					
Atomic Coordinates and B_{iso}/B_{eq} for 1-NaSCN					

Table 5 Atomic Coordinates and B_{iso}/B_{eq} for 2-RbSCN

			1					-	
Atom	х	У	Z	B _{eq}	Atom	х	У	Z	B _{eq} 6.21(3)
S(1)	0.79081(9)	-0.4666(1)	0.35572(5)	6.49(2)	Rb(1)	0.31226(8)	0.4273(1)	0.53182(6)	6.21(3)
Na(1)	0.68229(9)	-0.0561(1)	0.50544(5)	4.05(2)	S(1)	0.1690(3)	0.0933(4)	0.5755(2)	9.7(1)
O(1)	0.8436(2)	0.0450(3)	0.4563(1)	6.84(7)	O(1)	0.4395(6)	0.6725(9)	0.4992(5)	7.1(3)
O(2)	0.6020(2)	0.0347(2)	0.37658(10)	4.81(5)	O(2)	0.4387(8)	0.608(1)	0.6548(5)	8.9(3)
O(3)	0.5382(1)	0.1723(2)	0.49890(9)	3.65(4)	O(3)	0.2403(8)	0.535(1)	0.6589(5)	12.0(4)
O(4)	1.0108(2)	0.0354(2)	0.7838(1)	6.88(6)	O(4)	0.1238(5)	0.6019(9)	0.5153(5)	7.6(2)
N(1)	0.7895(2)	0.1640(2)	0.5897(1)	4.35(5)	O(5)	0.0545(5)	0.4600(7)	0.2211(4)	7.0(2)
N(1) N(2)	0.8022(2)	-0.1454(3)	0.6328(1)	4.84(6)	N(1)	0.2338(7)	0.6279(9)	0.3933(5)	5.0(2)
N(2) N(3)	0.7153(3)	-0.3092(3)	0.4655(2)	4.84(0) 7.24(9)	N(2)	0.2349(7)	0.298(1)	0.3758(5)	6.1(3)
C(1)	0.9075(3)	-0.3092(3) 0.1814(4)	0.5688(2)	6.26(9)	N(3)	0.3749(8)	0.116(1)	0.6331(6)	9.0(4)
• •	0.8967(3)	0.1814(4) 0.1839(5)	0.4867(2)		C(1)	0.2989(9)	0.760(1)	0.3982(6)	6.6(3)
C(2)	. ,	. ,	. ,	7.7(1)	C(2)	0.408(1)	0.731(1)	0.4249(9)	10.1(5)
C(3)	0.8098(4)	0.0370(6)	0.3766(2)	9.1(1)	C(3)	0.469(1)	0.770(2)	0.555(1)	12.9(6)
C(4)	0.6929(4)	0.1008(5)	0.3450(2)	8.0(1)	C(4)	0.4969(10)	0.715(2)	0.6278(9)	9.1(5)
C(5)	0.4996(3)	0.1328(3)	0.3700(2)	5.01(7)	C(5)	0.388(2)	0.656(3)	0.704(1)	16.7(8)
C(6)	0.5185(3)	0.2491(3)	0.4298(2)	4.70(7)	C(6)	0.296(2)	0.641(3)	0.7056(9)	15.4(7)
C(7)	0.5804(3)	0.2683(3)	0.5615(1)	4.46(7)	C(7)	0.134(1)	0.541(2)	0.6416(9)	13.4(7)
C(8)	0.7151(3)	0.3013(3)	0.5759(2)	5.25(7)	C(8)	0.092(1)	0.636(2)	0.582(1)	11.5(6)
C(9)	0.8108(3)	0.1192(3)	0.6674(2)	5.15(7)	C(9)	0.1057(8)	0.719(1)	0.4636(8)	7.2(4)
C(10)	0.8579(2)	-0.0410(3)	0.6801(1)	3.98(6)	C(10)	0.1278(8)	0.670(1)	0.3914(6)	5.6(3)
C(11)	0.9557(2)	-0.0783(3)	0.7387(1)	4.22(6)	C(11)	0.2373(7)	0.543(1)	0.3244(6)	5.8(3)
C(12)	0.9937(3)	-0.2248(3)	0.7485(1)	4.53(7)	C(12)	0.1880(9)	0.394(1)	0.3240(6)	5.1(3)
C(13)	0.9360(3)	-0.3314(3)	0.6998(2)	5.15(8)	C(13)	0.0960(9)	0.357(1)	0.2722(6)	5.3(3)
C(14)	0.8411(3)	-0.2874(3)	0.6430(2)	5.50(8)	C(14)	0.0550(9)	0.219(1)	0.2760(6)	6.5(4)
C(15)	0.7476(3)	-0.3730(3)	0.4205(2)	4.53(7)	C(15)	0.103(1)	0.122(1)	0.3300(8)	8.1(4)
H(1)	0.9437	0.2737	0.5885	7.4024	C(16)	0.193(1)	0.169(2)	0.3766(7)	8.1(5)
H(2)	0.9594	0.1000	0.5893	7.4024	C(17)	0.2898(10)	0.104(1)	0.6104(6)	6.6(4)
H(3)	0.9753	0.1930	0.4766	9.1286	H(1)	0.2850	0.8146	0.3506	8.2073
H(4)	0.8464	0.2643	0.4646	9.1286	H(2)	0.2769	0.8330	0.4338	8.2073
H(5)	0.8700	0.0932	0.3592	10.7330	H(3)	0.4462	0.8232	0.4208	11.7708
H(6)	0.8119	-0.0642	0.3629	10.7330	H(4)	0.4270	0.6633	0.3904	11.7708
H(7)	0.6742	0.0780	0.2933	9.6266	H(5)	0.5342	0.8261	0.5493	15.1283
H(8)	0.6953	0.2047	0.3524	9.6266	H(6)	0.4233	0.8488	0.5591	15.1283
	0.4868				H(7)	0.5051	0.8025	0.6634	10.8788
H(9)		0.1830	0.3236	5.9279	H(8)	0.5679	0.6799	0.6346	10.8788
H(10)	0.4305	0.0741	0.3717	5.9279	H(9)	0.4297	0.6393	0.7547	17.9437
H(11)	0.4479	0.3109	0.4235	5.6146	H(10)	0.3966	0.7739	0.7023	17.9437
H(12)	0.5874	0.3098	0.4287	5.6146	H(11)	0.2676	0.7395	0.6994	16.5828
H(13)	0.5371	0.3612	0.5519	5.1950	H(12)	0.3019	0.6182	0.7598	16.5828
H(14)	0.5635	0.2217	0.6034	5.1950	H(13)	0.1133	0.4306	0.6232	13.8818
H(15)	0.7374	0.3642	0.6182	6.1536	H(14)	0.1061	0.5398	0.6876	13.8818
H(16)	0.7318	0.3516	0.5344	6.1536	H(15)	0.1232	0.7326	0.6057	12.1862
H(17)	0.8692	0.1850	0.6962	6.0540	H(16)	0.0219	0.6458	0.5806	12.1862
H(18)	0.7361	0.1259	0.6821	6.0540	H(17)	0.0346	0.7542	0.4520	8.6911
H(19)	1.0597	-0.2516	0.7888	5.3738	H(18)	0.1475	0.8039	0.4771	8.6911
H(20)	0.9602	-0.4339	0.7056	6.1092	H(19)	0.1072	0.7470	0.3504	6.1223
H(21)	0.8014	-0.3616	0.6088	6.5340	H(20)	0.0824	0.5866	0.3707	6.1223
H(22)	1.0759	-0.0070	0.8217	7.9969	H(21)	0.2059	0.6002	0.2798	6.6733
					H(22)	0.3106	0.5378	0.3214	6.6733
$B_{eq} = 8/3\pi^2 (U_{11}(aa^*)^2 + U_{22}(bb^*)^2 + U_{33}(cc^*)^2 + 2U_{12}aa^*bb^* \cos\gamma + C_{12}aa^*bb^* $			H(23)	-0.0086	0.1880	0.2418	7.4094		
2U1288*0	$2U_{13}aa^*cc^*cos\beta + 2U_{23}bb^*cc^*cos\alpha)$			H(24)	0.0818	0.0186	0.3364	9.1500	
13					11(25)	0.2205	0.0064	0 4197	10.0200

H(25)

H(26)

0.2295

0.0234

was calculated from the increase of the cation concentration in the receiving phase after a period of 6 hours.

Preparation of Alkali-metal Thiocyanate Complexes with Armed-azacrown Ethers, 1 and 2.

Ligand 1 or 2 (0.01 mmole) in acetonitrile (1 mL) was reacted with alkali-metal thiocyanate (0.01 mmole) in methanol (1 mL). After the solvent had evaporated, the crystals were recrystallized from acetonitrile. The crystals were dried with an Abderhalden's

 $B_{eq} = 8/3\pi^2 (U_{11}(aa^*)^2 + U_{22}(bb^*)^2 + U_{33}(cc^*)^2 + 2U_{12}aa^*bb^* \cos\gamma +$ $2U_{13}aa^*cc^*cos\beta + 2U_{23}bb^*cc^*cos\alpha)$

0.4187

0.2361

10.0288

7.3499

0.0964

0.5628

dryer (50 °C, 0.5 Torr). The elemental analyses of the 1-NaSCN and 2-RbSCN complexes, respectively, are given below.

Anal. Calcd. for C15H22N3O4SNa; C, 49.58; H, 6.10; N, 11.56. Found: C, 49.67; H, 6.07; N, 11.33.

Anal. Calcd. for $C_{17}H_{26}N_3O_5SRb$, 43.45; H, 5.58; N, 8.94. Found: C, 43.43; H, 5.59; N, 8.95.

¹H NMR Titration Experiments.

Conditions of the ¹H nmr titration experiments are as follows: [crown ether] = 0.05 mmole in acetonitrile-d₃/deuterium hydroxide (1:1) 0.65 mL, [tetramethylammonium hydroxide] = 0.05 mmole (15% aqueous solution), [sodium hydroxide- d_1] = 0.05 mmole (40% solution in deuterium hydroxide), [sodium thiocyanate] = 0.05 mmole (0.05 mmole/10 µL solution in acetonitrile-d₃/deuterium hydroxide (1:1)).

Determination of Thermodynamic Values.

Log K, ΔH , and T ΔS were determined as described [7] in methanol at 25.0 \pm 0.1 °C by titration calorimetry using a Tronac Model 450 calorimeter equipped with a 20 mL reaction vessel. The metal cation solutions (0.08-0.12 mole/L) were titrated into the armed-azacrown ether solutions (1.3 x 10⁻³ – 2.6 x 10⁻³ mole/L) and the titrations were carried out to a two-fold excess of the metal cations. Sodium bromide, potassium bromide, rubidium chloride, and cesium chloride were used to prepare each cation solution.

Crystallography.

The crystallographic and experimental data are listed in Table 3. Each of the single crystals was mounted in a glass capillary. All measurements were made at 298 K on a Rigaku AFC5S fourcircle diffractometer with graphite-monochromated Mo Ka radiation (0.71069 Å) and a 12kW rotating-anode generator. Cell contacts and an orientation matrix for data collection were obtained from a least-squares refinement. The data were collected using the 2-2 θ scan technique to an above maximum 2 θ value of 55.0°. All intensities were corrected for Lorentz and polarization effects. The structure was solved by direct methods (SIR 92) [12]. The non-hydrogen atoms were refined anisotropically. The coordinates of all hydrogen atoms except the hydrogen atoms of the phenolic OH group were calculated at ideal positions and were refined (Table 5 and 6). Neutral atom scattering factors were taken from Cromer and Waber [13]. Anomalous dispersion effects were included in Fc [14]; the values for $\Delta f'$ and $\Delta f''$ were those of Creagh and McAuleyl [15]. The values for the mass attenuation coefficients are those of Creagh and Hubbel [16]. All calculations were using the teXsanTM crystallographic software package of Molecular Structure Corporation [17].

Calculation of Electrostatic Potential Iso-surfaces (Isopotential Surfaces).

The structures were optimized by an *ab-initio* method [10] and then use a density functional calculations (SVWN/DN*) [10]. All calculations were performed using PC Spartan *Pro* [18]. The volume of the isopotential surfaces displayed in 2-methyl-3pyridinol and its phenolate anion were made equal (14.41 Å³ for 2-methyl-3-pyridinol and 14.38 Å³ for its phenolate anion) to compare their energy. Acknowledgement.

This work was supported by a Grant-in Aid for Scientific Research (No. 09640698 and 12640566) from the Ministry of Education, Science and Culture (Japan) and the Japan Securities Scholars.

REFERENCES AND NOTES

* Int. Phone/Fax: +81-47-472-4322, e-mail: habata@chem.sci.toho-u.ac.jp.

[1] A. V. Bordunov, J. S. Bradshaw, V. N. Pastushok, and R. M. Izatt, *Synlett*, 933 (1996).

[2] Y. Habata and S. Akabori, J. Chem. Soc., Dalton Trans., 3871 (1996).

[3] Y. Habata, T. Saeki, S. Akabori, and J. S. Bradshaw, J. *Heterocyclic Chem.*, **36**, 355 (1999).

[4] Y. Habata, T. Saeki, S. Akabori, X. X. Zhang, and J. S. Bradshaw, *Chem. Comm.*, 1469 (2000).

[5] Y. Habata, S. Akabori, J. S. Bradshaw, and R. M. Izatt, *Ind. Eng. Chem. Res.*, **39**, 3465 (2000).

[6] Y. Habata, A. Watanabe, and S. Akabori, *Supramolecular Chem.*, submitted.

[7a] J. L. Oscarson and R. M. Izatt, In Physical Methods of Chemistry, B. W. Rossiter, R. C. Baetzold, Eds.; John Wiley & Sons: New York, 1992; Vol. **6**, Chapter 7; [b] R. M. Izatt, X. X. Zhang, H. Y. An, C. Y. Zhu, and J. S. Bradshaw, *Inorg. Chem.*, **33**, 1007 (1994).

[8] Y. Inoue and G. W. Gokel, Eds, Cation Binding by Macrocycles, Marcel Dekker, New York, 1990, p 1 and references cited therein.

[9] W. J. Hehre, J. Yu, P. E. Klunzinger, and L. Lou, A Brief Guide to Molecular Mechanics and Quantum Chemical Calculations, Wavefunction Inc., Irvine, 1998, p 138.

[10] Reviews of density functional theory: [a] R. O. Jones and O. Gunnarsson *Revs. Mod. Phys.*, **61**, 689 (1989); [b] R. G. Parr and W. Yang, Density Functional Theory of Atoms and Molecules, Oxford Univ. Press, Oxford, 1989; [c] J. K. Labanowski and J. W. Andzelm, Eds., Density Functional Methods in Chemistry, Springer-Verlag, New York, 1991.

[11] A. V. Bogatsky, N. G. Lukyanenko, V. N. Pastushok, and R. G. Kostyanovsky, *Synthesis*, 992 (1983).

[12] A. Altomare, M. C. Burla, M. Camalli, M. Cascarano, C. Giacovazzo, A.Guagliardi and G. Polidori, *J. Appl. Cryst.*, **27**, 435 (1994).

[13] D. T. Cromer and J. T. Waber, International Tables for X-ray Crystallography, Vol **IV**, The Kynoch Press, Birmingham, England, 1974, Table 2.2A.

[14] J. A. Ibers and W. C. Hamilton, *Acta Crystallogr.*, **17**, 781 (1964).

[15] D. C. Creagh and W. J. McAuley, International Tables for Crystallography, Vol C, (Wilson, A. J. C. Ed.), Kluwer Academic Publishers, Boston, 1992, Table 4.2.6.8, pp 219-222.

[16] D. C. Creagh and J. H. Hubbell, International Tables for Crystallography, Vol C, (Wilson, A. J. C. Ed.), Kluwer Academic Publishers, Boston, 1992, Table 4.2.4.3, pp 200-226.

[17] TexsanTM, Crystal Structure Analysis Package, Molecular Structure Corporation (1985 & 1999).

[18] PC Spartan Pro Ver 1.03, Wavefunction: Irvine, CA, 1999.